Solving Trig Equations

Example 1: Determine the exact measure of all angles that satisfy the given conditions.
a) $\tan \theta=-1 \quad 0^{\circ} \leq \theta<360^{\circ}$
b) $\cos \theta=\frac{\sqrt{3}}{2} \quad 0^{\circ} \leq \theta<360^{\circ}$

Tangent is negative so we are in Q2 or Q4
The reference angle is 45°
$\theta_{1}=135^{\circ}$ and $\theta_{2}=315^{\circ}$
Cosine is positive in Q1 or Q4
The reference angle is 30°
$\theta_{1}=30^{\circ}$ and $\theta_{2}=330^{\circ}$

c) $\cos \theta=\frac{-1}{2} \quad 0 \leq \theta<2 \pi$
d) $\csc \theta=2 \quad 0 \leq \theta<2 \pi$

Cosine is negative in Q 2 or Q 3
The reference angle is $\frac{\pi}{3}$
$\theta_{1}=\frac{2 \pi}{3}$ and $\theta_{2}=\frac{4 \pi}{3}$
Cosecant is positive in Q1 or Q2
The reference angle is $\frac{\pi}{6}$
$\theta_{1}=\frac{\pi}{6}$ and $\theta_{2}=\frac{5 \pi}{6}$

Solving Trig Equations

Whereas solving an algebraic equation involves finding the values) of the variable, solving a trigonometric equation involves finding the value (s) of and angle (θ).

The solutions) may need to be written in radians $(0 \leq \theta \leq 2 \pi)$ or in degrees $\left(0 \leq \theta \leq 360^{\circ}\right)$

Example 2: Determine the general solution in both degrees and radians. Give solutions as exact values.
a) $\sqrt{3} \tan \theta-1=0$
b) $-4+5 \sin \theta=4 \sin \theta-5$
$\tan \theta=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

$$
\theta_{1}=\frac{\pi}{6} \quad \theta_{3}=\pi+\frac{\pi}{6}=\frac{7 \pi}{6}
$$

$$
\theta_{1}=\frac{\pi}{6}+2 \pi k \quad Q_{2}=\frac{7 \pi}{6}+2 \pi k
$$

$$
\theta_{1}=30^{\circ}+360^{\circ} k \quad \theta_{2}=210^{\circ}+360^{\circ} k
$$

$$
\begin{aligned}
& \sin \theta=-1 \\
& \theta=\frac{3 \pi}{2} \text { or } 270^{\circ} \\
& \theta=\frac{3 \pi}{2}+2 \pi k \\
& \theta=270^{\circ}+360^{\circ} k
\end{aligned}
$$

Example 4: Solve and give solutions as exact values, where possible, in the given range.
c) $3 \csc \theta-6=0 \quad\left[-180^{\circ}, 180^{\circ}\right)$
d) $\cos ^{2} \theta-3 \cos \theta+2=0 \quad-\pi \leq \theta<\pi$

$$
3 \csc \theta=6
$$

$$
\text { Let } u=\cos \theta \quad x^{2}-3 x+2=0
$$

$$
(x-2)(x-1)=0
$$

$$
x=2 \quad x=1
$$

$$
\cos \theta=2 \quad \cos \theta=1
$$

$$
\begin{aligned}
& \text { no sols } \\
& \text { no }
\end{aligned}
$$

$$
\theta=0
$$

e) $\tan ^{2} \theta-5 \tan \theta+4=0 \quad[0,2 \pi)$

$$
\begin{array}{rlrl}
(\tan \theta-4) & (\tan \theta-1) & =0 \\
\tan \theta=4 & \tan \theta & =1 \\
\theta_{3} & =\tan ^{-1}(4) & \theta_{1} & =\frac{\pi}{4} \\
& =1.326 & \theta_{2} & =\frac{5 \pi}{4} \\
\theta_{4} & =1.326+\pi & \\
& \approx 4.467 &
\end{array}
$$

Example 3: Solve each equation on the interval $[0,2 \pi)$.
a) $\tan ^{2} x+\tan x=0$
b) $2 \sin ^{2} x-5 \sin x+2=0$

$$
\begin{aligned}
& \tan x(\tan x+1)=0 \\
& \tan x=0 \quad \tan x=-1 \\
& x=0, \pi \quad x=\frac{3 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

$$
\begin{array}{ll}
(2 \sin x-1)(\sin x-2)=0 \\
2 \sin x=1 & \sin x=2 \\
\sin x=\frac{1}{2} & \phi \\
x=\frac{\pi}{6}, \frac{5 \pi}{6} &
\end{array}
$$

Example 4: Find all real solutions.
a) $2 \sin ^{2} x-1=0$
b) $4 \sin ^{2} x-4 \sin x+1=0$

$$
\begin{aligned}
2 \sin ^{2} x & =1 \\
\sin ^{2} x & =\frac{1}{2} \\
\sin x & = \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{gathered}
(2 \sin x-1)(2 \sin x-1)=0 \\
2 \sin x-1=0 \\
\sin x=\frac{1}{2} \\
x=\frac{\pi}{6}+2 \pi k
\end{gathered}
$$

$$
x=\left\{\begin{array}{l}
\frac{\pi}{4}+2 \pi k \\
\frac{3 \pi}{4}+2 \pi k \\
\frac{5 \pi}{4}+2 \pi k \\
\frac{7 \pi}{4}+2 \pi k
\end{array}\right.
$$

