Example 1: Determine the exact measure of all angles that satisfy the given conditions.

a) $\tan \theta = -1$ $0^{\circ} \le \theta < 360^{\circ}$

Tangent is negative so we are in Q2 or Q4 The reference angle is 45°

 $\theta_1 = 135^\circ \text{ and } \theta_2 = 315^\circ$

b)
$$\cos\theta = \frac{\sqrt{3}}{2}$$
 $0^\circ \le \theta < 360^\circ$

Cosine is positive in Q1 or Q4 The reference angle is 30°

$$\theta_1 = 30^\circ \text{ and } \theta_2 = 330^\circ$$

c)
$$\cos\theta = \frac{-1}{2}$$
 $0 \le \theta < 2\pi$

Cosine is negative in Q2 or Q3 The reference angle is $\frac{\pi}{3}$

 $\theta_1 = \frac{2\pi}{3}$ and $\theta_2 = \frac{4\pi}{3}$

d) $\csc \theta = 2$ $0 \le \theta < 2\pi$

Cosecant is positive in Q1 or Q2 The reference angle is $\frac{\pi}{6}$

$$\theta_1 = \frac{\pi}{6}$$
 and $\theta_2 = \frac{5\pi}{6}$

Solving Trig Equations

Whereas solving an algebraic equation involves finding the value(s) of the variable, solving a trigonometric equation involves finding the value(s) of and angle (θ) .

The solution(s) may need to be written in radians $(0 \le \theta \le 2\pi)$ or in degrees $(0 \le \theta \le 360^\circ)$

Example 2: Determine the general solution in both degrees and radians. Give solutions as exact values.

a) $\sqrt{3} \tan \theta - 1 = 0$	b) $-4+5\sin\theta=4\sin\theta-5$
$\tan \theta = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	$\Theta = \frac{3\pi}{2} \text{ or } 270^{\circ}$
$\theta_1 = \frac{\pi}{6} \theta_2 = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$ $\theta_1 = \frac{\pi}{6} + 2\pi \kappa \theta_2 = \frac{1\pi}{6} + 2\pi \kappa$	$\theta = \frac{3\pi}{2} + 2\pi k$
0, = 30° + 360° k 02 = 210° + 360° k	0 = 270° + 360° K

Example 4: Solve and give solutions as exact values, where possible, in the given range.

c)
$$3\csc\theta - 6 = 0$$
 $[-180^{\circ}, 180^{\circ})$
 $3\csc\theta = 6$
 $\csc\theta = 2$
 $5iA \theta = \frac{1}{2}$
 $\theta = \sqrt[6]{30^{\circ}}, 150^{\circ}$
d) $\cos^{2}\theta - 3\cos\theta + 2 = 0$
 $tetu = \cos\theta$
 $x^{2} - 3x + 2 = 3$
 $(x - 2)(x - 1) = 0$
 $x = 2$
 $\cos \theta = 2$
 $\cos \theta = 2$
 $\cos \theta = 0$
 $\cos \theta = 0$

e)
$$\tan^2 \theta - 5 \tan \theta + 4 = 0$$
 [0, 2π)
($\tan \theta - 4$) ($\tan \theta - 1$) = 0

$$tan \theta = 4$$
 $tan \theta = 1$
 $\theta_3 = tan^{-1}(4)$ $\theta_1 = \frac{\pi}{4}$
 $= 1.326$ $\theta_2 = \frac{\pi}{4}$
 $\theta_4 = 1.326 + \pi$
 ≈ 4.467

Example 3: Solve each equation on the interval $[0, 2\pi)$.

a)
$$\tan^{2} x + \tan x = 0$$

 $\tan x (\tan x + 1) = 0$
 $\tan x = -1$
 $x = 0, \pi$
 $x = \frac{3\pi}{4}, \frac{7\pi}{4}$
b) $2\sin^{2} x - 5\sin x + 2 = 0$
 $(25iAx + 1)(5iAx - 2) = 0$
 $25iAx = 1$
 $5iAx = 2$
 $5iAx = 2$

Example 4: Find <u>all</u> real solutions.

a)
$$2\sin^2 x - 1 = 0$$

b) $4\sin^2 x - 4\sin x + 1 = 0$

$$Z_{51N}^{2} X = 1$$

$$S_{1N}^{2} X = \frac{1}{2}$$

$$S_{1N} X = \frac{1}{12}$$

$$(2 \sin x - 1)(2 \sin x - 1) = 0$$

$$2 \sin x - 1 = 0$$

$$\sin x = \frac{1}{2}$$

$$x = \frac{1}{6} + 2\pi k$$

$$x = \frac{5\pi}{6} + 2\pi k$$