Find the derivative of each of the following:

1. $y=(3 x-2)^{4}$
2. $y=\sqrt{(2 x-5)}$
3. $y=\frac{x^{2}+3 x-10}{x}$
4. $y=(5 x-1)^{6}$
5. $y=\left(2 x^{2}+4 x-3\right)\left(5 x^{3}+x+2\right)$
6. $y=\left(3 x^{2}+7\right)^{3}\left(x^{3}-x\right)$
7. $y=(-5 x+4)^{3}\left(x^{3}-2 x^{2}\right)^{2}$
8. $y=x\left(x^{4}-2\right)^{4}$
9. $y=\left(4 x^{3}-x\right)^{2}\left(2 x^{2}-7 x\right)^{-4}$
10. $y=(2 x-5)^{4}\left(x^{2}-7\right)^{5}$

Answer the following
11. Find the equation of the tangent line to the function $f(x)=\frac{x^{2}+x-2}{2 x}$ at the point where $x=1$.
12. Find where $f(x)=\left(x^{2}-1\right)^{3}$ is increasing and decreasing and state the maxs $/ \mathrm{mins}$.
13. Suppose that the functions f and g and their first derivatives have the following values at $x=-1$ and $x=0$. Find an expression for the derivative of the following combinations, then find the derivative at the indicated point.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	0	-1	2	1
0	-1	-3	-2	4

a) $3 f(x)-g(x)$ at $x=-1$
b) $f(x) \bullet 4 g(x)$ at $x=0$
c) $f(2 x+g(x))$ at $x=-1$
14. For each of the following, use the fact that $g^{\prime}(3)=4, g(5)=-3, g^{\prime}(5)=6, h(5)=3$, and $h^{\prime}(5)=-2$ to find $f^{\prime}(5)$.
a) $f(x)=g(x) h(x)$
b) $f(x)=g(h(x))$
c) $f(x)=[g(x)]^{3}$

