<u>Rule #1</u>: Derivative of a Constant Function

If
$$f(x) = c$$
 then $f'(x) = 0$

This should not be too earth shattering to you, since the slope of a constant function is always 0!

Example 1: Find the derivative.

a. f(x) = 6 f'(x) = 0b. f(x) = -810f'(x) = 0

Rule #2: Power Rule
If
$$f(x) = x^n$$
 then $f'(x) = n \cdot x^{n-1}$

The use of the power rule is unchanged for n being a positive integer, n being a negative integer, or n being a rational number.

The KEY to using the power rule is to get comfortable using exponent rules to write a function as a power of x.

Example 2: Find the derivative.

a)
$$F(x) = 6x^{5}$$
 $n=5$
 $F'(x) = 5x^{4}$ $n-1=4$
b) $F(x) = 3x^{2}$
 $F'(x) = 6x' \text{ or } 6x \notin \text{ move power to coeff} is subt 1$
c) $F(x) = \frac{1}{x}$ $\stackrel{2}{=} \text{make problem be in correct form}$
 $= 6x^{-1}$ by make it have a power of -1
 $F'(x) = -1x^{-2}$ $\stackrel{2}{=} \text{Now that it is in power form, we}$
 Can Find F'
 $\text{make sure to subt.}$
d) $F(x) = 2x^{-4}$ $\stackrel{2}{=} \text{already in power form, so}$
 $F'(x) = -8x^{-5}$ $\stackrel{2}{=} \text{Be sore to use correct notation}$
e. So what do we do if we have
 $F(x) = 6x^{3} - 4x^{2} + 2x - 9$
To Find $F'(x)$, take the derivative of each term
 $F'(x) = 18x^{2} - 8x + 2$ Remember, the derivative of
 a constant =0

F.
$$f(x) = \frac{2x^2+5}{7}$$
 \notin we must separate this before
 $F(x) = \frac{3}{7}x^2 + \frac{5}{7}$ Finding f
 $F'(x) = \frac{4}{7}x$ \notin Once we have it split, we can
simplify if necessary $\frac{1}{5}$ find
 F'
 $g. F(x) = \frac{8x^3+5x^2-4x}{3x}$ \notin separate
 $= \frac{8x^3}{3x} + \frac{5x^2}{3x} - \frac{4x}{3x}$ \notin reduce
 $= \frac{8x^3}{3x} + \frac{5x^2}{3x} - \frac{4x}{3x}$ \notin reduce
 $f(x) = \frac{8}{3}x^2 + \frac{5}{3}x - \frac{4}{3}$ \notin now it is in power form,
 $F(x) = \frac{8}{3}x^2 + \frac{5}{3}x - \frac{4}{3}$ \notin make sure to reduce if
 $F' = \frac{16}{3}x + \frac{5}{3}$ \notin make sure to reduce if
necessary

Since the derivative is also the expression for the expression for the slope of the line tangent to the graph of a function, we can use the derivative to find the slope of the tangent at a given point.

Example 3: Find the slope of the line tangent. To find the slope of the line tangent, we must find the derivative first, and then sub in the x-value into the derivative

a)
$$f(x) = x^4 - 2x^3 + 5x^2 - 8$$
 at $x = -2$

I.

a)
$$F(x) = x^4 - 2x^3 + 5x^2 - 8$$
 AT $x = -2$
Fund $F'(x) = 4x^3 - 6x^2 + 10x$
Now Evaluate $F'(-2)$ TO FIND THE SLOPE
 $F'(-2) = 4(-2)^3 - 6(-2)^2 + 10(-2)$
 $= (-76)^2$
: the slope at $x = -2$ is -76 .

b)
$$f(x) = \frac{-3}{x^5}$$
 at $x = -1$
b) $F(x) = \frac{-3}{x^5}$ at $x = -1$ to FIND $F'(x)$ we must change the
 $F(x) = -3x^{-5}$ Form First
 $F'(x) = 15x^{-6}$ find F'
 $F'(-1) = 15(-1)^{-6}$ Evaluate at $x = -1$
 15 Slope is 15 AT $x = -1$

c) $f(x) = 2x^4 - 3x^3 + 4x^2 + 2x + 1$ at x = -1

c.
$$F(x) = 2x^4 - 3x^3 + 4x^2 + 2x + 1$$
 AT $x = -1$
 $F'(x) = 8x^3 - 9x^2 + 8x + 2$
 $F'(-1) = 8(-1)^3 - 9(-1)^2 + 8(-1) + 2 = -23$
THE SLOPE AT $x = -1$ is -23.

Once we are able to find the slope of the line tangent, we can write the equation of the line using the point-slope formula.

Ex 4: Find the equation of the line tangent at the given value. *Recall pt-slope formula:* $y - y_1 = m(x - x_1)$

a) $f(x) = 3x^3 - 2x^2 + 4x - 2$ at (2, 22) – called point of tangency

FIND
$$F'(x)$$
 : $F'(x) = 9x^2 - 4x + 4$
FIND SLOPE AS IN Example 3
 $F'(2) = 9(2)^2 - 4(2) + 4 = 32$
SO SLOPE IS 32
Plug into PT-SLOPE : $y - 22 = 32(x - 2)$
 $y - 22 = 32x - 64 + 22$
 $y = 32x - 42$
: $y = 32x - 42$ is the equation of the line tangent
at $x = 2$

b) $f(x) = 4x^4 - 2x^2 + 3$ at x = -1

b) $f(x) = 4x^4 - 2x^2 + 3$ AT x = -1-Bacause we are writing the equation is not just finding slope, we will need the y-value at x=1 since they did not give it to us this time. - This is called the point of tangency is to find y, we plug x into the original equation Pt. of tangency: (-1, 5) $F(-1) = 4(-1)^{4} - 2(-1)^{2} + 3^{7}$ F(-1) = 5Slope of line tangent $F'(x) = 16x^3 - 4x$ Evaluate $f'(-1) = 16(-1)^3 - 4(-1) = -12$ SO SLOPE OF TANGENT LINE IS -12 Equation of line tangent y-5=-12(x+1) y-5=-12x-12 y = -12x + 7

Remember, if you plug x into f(x), you find y and the point of tangency. If you plug x into f'(x), you find the slope of the line tangent.