Rule \#1: Derivative of a Constant Function

If $f(x)=c$ then $f^{\prime}(x)=0$
This should not be too earth shattering to you, since the slope of a constant function is always 0 !
Example 1: Find the derivative.
a. $f(x)=6$
b. $f(x)=-810$
$f^{\prime}(x)=0$
$f^{\prime}(x)=0$

Rule \#2: Power Rule
If $f(x)=x^{n}$ then $f^{\prime}(x)=n \cdot x^{n-1}$
The use of the power rule is unchanged for n being a positive integer, n being a negative integer, or n being a rational number.

The KEY to using the power rule is to get comfortable using exponent rules to write a function as a power of x .
Example 2: Find the derivative.

```
\(\begin{array}{ll}f(x)=\sqrt{x}^{5} & n=5 \\ f^{\prime}(x)=5 x^{4} & n-1=4\end{array}\)
    \(f(x)=3 x^{2}\)
\(f^{\prime}(x)=6 x^{\prime}\) or \(6 x \Leftarrow\) move power to coeff isubt 1
```



```
\(F(x)=2^{2} x^{-4}<\) already in power form, so
find \(F^{\prime}\)
    \(f^{\prime}(x)=-8 x^{-5} \leqslant\) Be sure to use correct notation
    So what do we do if we have
        \(f(x)=6 x^{3}-4 x^{2}+2 x-9\)
    To find \(F^{\prime}(x)\), take the derivative of each term
        \(f^{\prime}(x)=18 x^{2}-8 x+2 \quad\) Remember, the derivative of
                        a constant \(=0\)
```

$$
\begin{aligned}
& \text { F. } \begin{aligned}
f(x) & =\frac{2 x^{2}+5}{7} \\
f(x) & =\frac{2}{7} x^{2}+\frac{5}{7} \quad \text { We must separate this before }
\end{aligned} \\
& \begin{aligned}
f^{\prime}(x)=\frac{4}{7} x \quad & <\text { Once weave it split, we can } \\
& \text { simplify if necessary si find } \\
& f^{\prime}
\end{aligned} \\
& F(x)=\frac{8 x^{3}+5 x^{2}-4 x}{3 x} \Leftrightarrow \text { separate } \\
& =\frac{8 x^{3}}{3 x}+\frac{5 x^{2}}{3 x}-\frac{4 x}{3 x} \leqslant \text { reduce } \\
& \begin{aligned}
f(x)=\frac{8}{3} x^{2}+\frac{5}{3} x-\frac{4}{3} \quad & \text { Now it is in power form, } \\
& \text { find } f^{\prime}
\end{aligned} \\
& f^{\prime}=\frac{16}{3} x+\frac{5}{3} \quad \Leftarrow \begin{array}{c}
\text { make sure to reduce if } \\
\text { necessary }
\end{array}
\end{aligned}
$$

Since the derivative is also the expression for the expression for the slope of the line tangent to the graph of a function, we can use the derivative to find the slope of the tangent at a given point.

Example 3: Find the slope of the line tangent. To find the slope of the line tangent, we must find the derivative first, and then sub in the x-value into the derivative
a) $f(x)=x^{4}-2 x^{3}+5 x^{2}-8 \quad$ at $\mathrm{x}=-2$
a) $f(x)=x^{4}-2 x^{3}+5 x^{2}-8$ AT $x=-2$

Ind $f^{\prime}(x)=4 x^{3}-6 x^{2}+10 x$
Now evaluate $f^{\prime}(-2)$ TO FIND THE SLOPE

$$
\begin{aligned}
& f^{\prime}(-2)=4(-2)^{3}-6(-2)^{2}+10(-2) \\
&=-76 \\
& \text { e slope at } x=-2 \text { is }-76 .
\end{aligned}
$$

b) $f(x)=\frac{-3}{x^{5}} \quad$ at $x=-1$
b) $f(x)=\frac{-3}{x^{5}}$ at $x=-1$ to FIND $f^{\prime}(x)$ we must change the

$$
\begin{aligned}
f(x)=-3 x^{-5} & \text { form first } \\
f^{\prime}(x)=15 x^{-6} & \text { Fino } f^{\prime} \\
f^{\prime}(-1)=15(-1)^{-6} & \text { Evaluate at } x=-1 \\
15 & \text { Slope is 15 AT } x=-1
\end{aligned}
$$

c) $f(x)=2 x^{4}-3 x^{3}+4 x^{2}+2 x+1 \quad$ at $\mathrm{x}=-1$
c. $f(x)=2 x^{4}-3 x^{3}+4 x^{2}+2 x+1$ AT $x=-1$

$$
\begin{aligned}
& f^{\prime}(x)=8 x^{3}-9 x^{2}+8 x+2 \\
& f^{\prime}(-1)=8(-1)^{3}-9(-1)^{2}+8(-1)+2=-23 \\
& \frac{f^{2}}{1+} \in \text { SLOPE AT } x=-1 \text { 15 }-23 .
\end{aligned}
$$

Once we are able to find the slope of the line tangent, we can write the equation of the line using the point-slope formula.

Ex 4: Find the equation of the line tangent at the given value. Recall pt-slope formula: $y-y_{1}=m\left(x-x_{1}\right)$
a) $f(x)=3 x^{3}-2 x^{2}+4 x-2$ at $(2,22)-$ called point of tangency

$$
\text { FIND } f^{\prime}(x) \quad: \quad f^{\prime}(x)=9 x^{2}-4 x+4
$$

FIND SLOPE AS IN Example 3

$$
\begin{aligned}
& f^{\prime}(2)=9(2)^{2}-4(2)+4=32 \\
& \text { so sLOPE } 1532
\end{aligned}
$$

Plug into PT-SLOPE:

$$
\begin{gathered}
y-22=32(x-2) \\
y-22=32 x-64+22 \\
y=32 x-42
\end{gathered}
$$

$\therefore \quad y=\begin{aligned} & 32 x-42 \text { is the equation of the line tangent } \\ & \text { att } \\ & x=2\end{aligned}$
b) $f(x)=4 x^{4}-2 x^{2}+3$ at $x=-1$
b) $f(x)=4 x^{4}-2 x^{2}+3$ AT $x=-1$
-Because we are writing the equation in not just finding
slope, we will need the y-value at $x=1$ since they did not give it to us this time.

- This is called the point of tangency ? to find
y, we plug x into the original equation
Pt. of tangency: $\left(-1, \frac{5}{5}\right)$

$$
F(-1)=4(-1)^{4}-2(-1)^{2}+3^{3}
$$

$$
f(-1)=5
$$

Slope of line tangent

$$
f^{\prime}(x)=16 x^{3}-4 x
$$

Evaluate

$$
\begin{aligned}
& \text { ate }(-1)=16(-1)^{3}-4(-1)=-12 \\
& f^{\prime} \\
& \text { So SLOPE Of TANGENT LINE is }-12
\end{aligned}
$$

Equation of line tangent

$$
\begin{gathered}
y-5=-12(x+1) \\
y-5=-12 x-12 \\
y=-12 x+7
\end{gathered}
$$

Remember, if you plug x into $f(x)$, you find y and the point of tangency. If you plug x into $f^{\prime}(x)$, you find the slope of the line tangent.

