I. Find the x-intercept and the y-intercept. (No calc)

1. $f(x)=x^{2}+12 x+32$
2. $f(x)=x^{3}-12 x^{2}+35 x$
3. $f(x)=4 x^{2}+16 x+15$
4. $f(x)=x^{4}-13 x^{2}+36$
II. Find the critical points of each of the following functions. Round to the nearest hundredth, if necessary.
5. $f(x)=x^{2}-2 x+4$
6. $v(t)=8 t^{3}-t^{2}$
7. $f(x)=x^{5}-80 x$
8. $f(x)=x^{4}+x^{3}-x^{2}+4$
III. Find the critical points and the intervals on which the function is increasing or decreasing. Use the First Derivative Test to determine whether the critical point is a local maximum, local minimum, or neither. Round to the nearest hundredth, if necessary.
9. $f(x)=-x^{2}+7 x-17$
10. $f(x)=x^{3}-12 x^{2}$
11. $f(x)=x^{2}+(10-x)^{2}$
12. $f(x)=3 x^{4}+8 x^{3}-6 x^{2}-24 x$
13. $f(x)=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}+2 x+4$
14. $f(x)=-x^{4}+3 x^{2}-4$
15. Let f be a function whose derivative is given by $f^{\prime}(x)=(x-2)^{2}(4 x-2)$. Find all critical points and classify each one as a local maximum, local minimum, or neither.

IV. Given the following graph, answer the questions. Challenging, but give it a shot!!

16. Determine the intervals on which $f^{\prime}(x)$ is positive and negative, assuming that the given graph is the graph of $f(x)$
17. Determine the intervals on which $f(x)$ is increasing or decreasing, assuming that the given graph is the graph of $f^{\prime}(x)$
18. State whether $f(2)$ and $f(4)$ are local minimums or local maximums, assuming that the given graph is the graph of $f^{\prime}(x)$
V. Determine the intervals on which the function is concave up or concave down and find the points of inflection. Round to the nearest hundredth, if necessary.
19. $f(x)=10 x^{3}-x^{5}$
20. $f(x)=\frac{1}{2} x^{4}+2 x^{3}$
21. $f(x)=\frac{1}{3} x^{3}-x^{2}-3 x+1$
22. $D(r)=r^{4}-8 r^{2}+16$
23. If $f^{\prime \prime}(x)=x(x+1)(x-2)^{2}$ then the graph of f has inflection points when $x=$
(A) -1 only
(B) 2 only
(C) -1 and 0 only
(D) -1 and 2 only
(E) $-1,0$, and 2 only
24. If $f(x)=\sqrt{x^{2}-4}$ and $g(x)=3 x-2$, find the derivative of $f(g(x))$ at $x=3$.

